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AN INTEGRAL EQUATION OCCURRING IN A PROBLEM OF SUBSIDENCE 

ABSTRACT 

The linear boundary value problem that was solved by numerical 

methods in BRL Report No. 1131 has been reformulated as a linear 

integral equation and solved by Laplace transform methods. 
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IMTR ODUC TION 

As a result of mining operations cavities are produced into which 

the overburden may eventually collapse» Following collapse there will 

be a period during which the fallen material subsides. It would be 

extremely difficult to treat this motion in a way that takes into 

account all the geometrical and physical peculiarities of a particular 

situation. However, Leser and Jenike ^ ■ have proposed a semi-err pi'.rical 

idealized one-dimensional model of subsidence which is base! on the 

following system of linear partial differential equations. 

du/dT = -ar>y/öT (1.1) 

öy/öt = u (--2) 

Here v(t.T) is the height above +he ton surface of the cavitv at time t 

of the layer of material through which the plane of disturbance passed 

at time T; u(t,T) is the velocity of this layer; and 

-1 
a{t,T)     = K i + K\X - T; ±    +   T, 

"1  /-i -r  \ 

is an empirical function, in which the constant K >1. By eliminating 

y(t,T) between (l.l) one obtains for u(t,T) the linear hyperbolic partial 

differential equation 

d u    _  - 2K      öu K-i--1*-) 
OXOT       -L -l- JVV, U-i)        ui 

Boundary conditions for (l.^) were determined by the following con- 

sidera.ions. Let y   be the original density of the undisturbed overburden, s 

and 7 y    the density immediately after passage of the disturbance, both 

being assumed constant. Then conservation of matter at the wave front 

■uY+._+. ^   -tmnllPH J \ -t - I    -—-tr  

yg dy(T, T)/dT    =    yQ   l_dy(T,  T)/dT    - u(T, T)] (1.5) 

By (l.l) -  (1.3) this can be rewritten as 

du(T,  T)/dT    -    7a  (K - 1)  (>    -  y) -1 u(T,  T) ...x.6) 



On T = 0 it was assumed on emuirical grounds that for some constant 

u(t, 0) = - €7g (K - 1) (78 - 7Q)ml  (1 + Kt)'2   (1.7) 

Leser and Jenike solved this problem originally by numerical inte- 

gration. However, as we shall show in the following sections: 

(i) An integral representation (2.6) can be found for u(t, T) in 

terms of u(t, t); 

(ii) u(t, t) satisfies a Volterra integral equation (2.8) of the 

second kind, of convolution type, that depends on the single parameter 

a - (1 - K"1) (1 - Vs -1) "1>0 (1.8) 

(ill) lim   u(t, t) = 0 or oo     as a = 1 or a > 1. 

•^.2 ^L   -2 
(iv) 1 = (l + t) u(t, t) = m  (a)   for some m(a), a <1. 

(v) u(t; t) is a strictly increasing function of a for fixed t. 

(vi) u(t, t) is a strictly decreasing function of t for fixed a such 

that 0 C a "^ 1. 

(vii) The wave-front y(t, t) advances only a finite distance if a < 1. 

The author wishes to acknowledge his indebtedness to Dr. T. Leser 

for calling his attention to this problem, and to Dr. W. C. Taylor for 

suggestions concerning its treatment by Laplace transform theory. 

REFORMULATION-REDUCTION TO AN INTEGRAL EQUATION 

If we let 

+.h*n    tl .*,\   _    n.,7)   b uiku    V -•- • J )    ~     V-1-' 

■ 1) 
u(ic ' 

lecoae 

2 öw 
oT 1 + t - T 

ö2w 2 öw (2.2) 
3t<5T   = 



where 

^Sl    -    av(T,T) (2.3) 

w(t, 0) = (1 + t)"2 (2.k) 

= yß  (K - i)/K (r6 -70)> 0 (2.5) 

Now ^2.2) to (2.4) imply 

T 
1        /    w(r,r) dr 

v(t, T)  =      p  + a i    > ', ■' s  ^.o; 
a + t)c 

J 0   v-^ r " - *"/ 

and if we let 

v(t) = w(t, t) (2.7) 

then by (2.6) 
t r 

v(t) - _*-,  + a  /     V^  g      (2.8) 
(i + tr J0      (1 + t - r)* 

Thus v(t) is defined as a solution of a Volterra integral equation of 

the second kind of convolution type. The standard theorem for such 
(2) equations * ' asserts the existence of v(t), and in fact yields 

(1 + t)"2 ^ v(t) ±  eat (1 + t)"2 (2.9) 

Also by (2.6) 

(1 + t)"2 ^~  w(t, T) ^ w(t, t) = v(t)       (2.10) 

and, actually, w(t, T) is a strictly increasing function of T for fixed 

t = T. Since the positive function w(t, T) is dominated by v(t), in 

order to provide a basis for estimating w it will suffice to consider 

only v(t). 

APPLICATION OF LAPLACE TfiANSFORJ© 

By (2.9) v(t) is of exponential type. Accordingly its Laplace 

transform 



V(a\ I ~-s,t       /.\    ,. /x   i \ 

is a rsgiil ftr function of s for Re s ,>• a.    Also 

f(t)    «    (1 + t)'2 (3.2) 

Is bounded, and Its Laplace transform 

r°° 
F(s)    =       I        e -8t f(t) dt (3.3) 

«'o 

Is regular for Re s > 0. Since 

^e sr(B)  y    = e /s (3.if) 

and since 

c  r  =  ^ c  j;;-  =  Wior AS a  =  00 , 

then (3.^) implies, after an integration by parts, that 

F(a)      =  1 - se S  /    r-'1  f~T  dr (-*.   R\ -.-,       -    --      , \*"s I 

vhieh is regular in the entire s -plane except for a slit along the 

negative real-axis. 

In the region where both V(s) and F(s) exist the Laplace transform 

or (^.o) 

V(s) = F(s) + aF(s) V (s) 

and then (3.5) and 

r 
V(s) = F(s)/ [1 - a F(s)J (3.6) 

define the analytic continuation of V(s) into the slit a-plane. To 

determine the nature and location of the singularities of V, first 



consider F. If we move the point s around a closed path that contains 

s = 0 we obtain from (3.5) 

F (se2Äi) = F(s) + 2rtiSe
S 

Accordingly 

F(s) = H(s) + se8log B (3.7) 

where H(s) is an entire function. Thus F(s) has a logarithmic branch 

point at s = 0. Since F is real on the positive real axis, H(s) is 

real on the entire real axis. Now 

'o for s *    0 

Im F(s) =< 

s + se for s £   0 

where the upper (lower) sign refers to the upper (lower) side of the 

slit. By the maximum principle for harmonic functions Im F(s) is 

negative (positive) on the upper (lower) half of the s-plane. 

Consequently the roots of 

1 - aF (BO) = 0 (3.8) 

can lie only on the positive real axis or- at s =0. Since F(0) = 1, 

and since for s = 0 

F'(s) = -  I   e"st tf(t)dt <0 

(3.8) has a single simple root s > 0 if and only if a > 1; and 

a  = 0 if and only if a = 1. Thus, if a > 1, then V(s) has a single 

simple pole at s in addition to a branch point at 0; if 0 c  a <_1 it 

has only a branch point. 



,/ 

/ 

The complex inversion formula yields 

x+i oo 

-' X-i ÖO 

v(t) = teni)-1 f     ets v(s) ds 

-'x-i o. 

where x> s . An estimate that can be used to bound |V(s) can be 

found by integrating C+.5) twice by parts to obtain 

,00 

F(s) = s"-"- -2s"c + 6seB  I   r"* e"r dr .-1 «_-2 . ^_B     [   _-k  _-r I. 
If the path of integration of F(s) is taken to be the half-line 

I a j = r = 00 and the circular arc r = la e ', 0^. 10 | = 0 ' ^" it , 

then 

|F(B) - s-1 + 2s-2|    S  6    |B I "5 a"2  Is I 8in^/2 46 |B I -2   (3.10) 

By standard techniques and application of (3.10) the path of 

integration in (3.9) can be deformed into a circle C about s (if a>l) 

and a path that traverses both sides of the negative real axis. The 

circle contributes 

f  st 
(2*1)"1 I      ? Ulfä    - -eSotF(3j/aF'(B.),a>l (3.11) 

where, by (3-5) and (3-9) 

F(ao) = l/a, aF'(s0) = (l + B"1) (l -a) + a   (3.12) 

The negative real axis contributes 

I(t) = (2«!)-1 j  e** (V" - V+ )dx 

-*  -ox> 

where V~ (V ) designates values on the lower (upper) side of the axis 

and x = Re s = s. Now write 

10 



V" - V+ » F" /(l-aF") - F+/(l-aF+)    = (F~ - F+)/(l-aF")(l-aF+) 

By (3*7) F  = F  and F - F  = - 2«ixeÄ , whence 

Kt) = - 
J 

I       xe*1+t'x |l - aF'(x)| "2  dx;> 0. (3.13) 

-on 

If a / 1, then  j 1 -aF" |  / 0 on -. OO = X ^ 0 , since ?"(-oo) *= 0 

and F"(0) = 1. Then if we let 

m(a) = min Jl - aF~ | > 0 

we find 

0 <l(t)<- m~2 /  xe(l+t'X dx - m"2(l,+ t)'2, a f 1. (3.1^) 

— w 

Now we can prove the assertions of Section 1., If a > 1, then 

Sot 
v(t) = l(t) - e   F(s UaP' (s ) 

which implies part of (iii). If a <1, then v(t) ^ l(t), and (3=1*0 

implies another part of (iii).  In conjunction with V = (l + t)" 

(3.11*) yields (iv). 

The case a = 1 remains to be treated. First note that by (3-7) 

F(0) = 1 Implies H(0) - 1. Now let 

oo 

4-—\   n 
• 1 

where the coefficients a are real. Then 
n 



oo 

and 

1 - F 

li - *• ! 2 

^   n > a x xe 

r 
2   ^ 

OO 

log (-X; - JU 

-I tL 

f y    V
n"~ + eX log ("X>J   + «^f  (5'15) 

The convergence of I at its upper limit follows from 

.o /\ -oo -o ^ -oo 

J       e<^)xdx     f"  - N     | a"2 

•'-b x log" (-x) -* log b 

du    =    - N/log b    (3.16) 

where 0 ^.b < 1, and N    =   max (l, e^ ~   '  ).    The convergence of I at 

its lower limit follows from     J1 - F" j 

Now we can easily deduce 

lim.        v(t)    =   Q if a    -   1. x=oo   

Proof:    Write 

Ä/  2    2x.   _ 
=    u(x    e     ) for x-> - oo. 

+    /        xe<1+t)x    |l 
J ^ ' 

Jl  +I2 

and suppose t > 1. First, choose b £.1 so small that 

.2 
1 - F >  ,-. ,. 2 = 0.5x log ""(-x) in I0. Then choose G ;> 0 and reduce b, 

if necessary, so that -2/log b -CO. Then by (3.16) O^Ip^fi for all 

t >1. Next, if we let 

-b 

then 

r 

y-oo 

ll - F" 
-2 

I dx = P 

_-(l+t)b 

32 



and for 

t > i - b "-1 log (0/P) 

we have 0 < L, <. 0. Finally, for such b and t, 0 ^.1^. 20. 
j. 

The standard lnterative technique for solving (2.8) would yield a 

power series in a with coefficients that are positive functions of t. 

Thus v(t) is a monotone function of a for all t > 0. This and the 

representation v(t) = l(t) for 0 <£. a = 1, and (3-13) imply (v) and 

VVJ./. 

Finally, let us consider the motion of the wave-front y = y(t, t). 

By (1.5), (2.1), and (2.7) 

dv(t.  tVdt    -    e(K -l) 7    7_  (7_ -  7.) "* v(K t) 

and if y(0, 0)    =0, then 

y(t,  t)    m    e K'X(K - 1) 7„7J7„ - 7j'*   \       v(s) ds (3.17) 
USD \J J 

O 

By (iv), If a/l. 

1   £   (1 + t -1)   j    v(s) ds    =   m _2(a)  , 

0 

which implies (vii). 

J. H. GEESE 

T 1 
■L-J 



REFERENCES 

1. Leser, T., and Jenike, A. Numerical Solutions of the 
Underground Subsidence Problem. BRL Report No. lljl (1961); to be 
submitted to Mining Engineering Monthly. 

2. Tricomi, F. G. Integral Equations. New York, 1957- 

Ik 



Trrs'TOTraTTmN T.TST 

No.  of 
Copies Organization 

No.  of 
Copies Organization 

10 Commander 
Armed Services Technical 

Information Agency 
A mrmT .       rm-Dn? rt.a.j.11.        in >^x\ 

1 Commander 
U.S.  Naval Weapons 
Amrnw.       TV«      o^v^^-m niiii,        UL •     vuucii 

TV» "hi cn-p»ri .    Vi Tcri n1 fi ** e>* w»*7     . — * o—"-— 

Arlington 12, Virginia 

Box CM, Duke Station 
Durham, North Carolina 

Army Research Office 
Arlington Hall Station 
Arlington, Virginia 

1 

Commanding Officer 
Diamond Ordnance Fuze Laboratories 
ATTN:  Technical Information Office, 

Branch 04l 1 

Commanding General 
ATTN:  Technical Library 
White Sands Missile Range, New Mexico 1 

uommanamg urricer 
Army Research Office (Durham) 

Commander 
Air Proving Ground Center 
ATTN:  PGAPI 
Eglin Air Force Base, Florida 

U.S. Department of the Interior 
U.S. Bureau of Mines 
U800 Forbes Street 
Pittsburgh 13, Pennsylvania 

Hercules Experimentation Station 
Wilmington, Delaware 

Vitro Laboratories 
ATTN:  Library 
200 Pleasant Valley Way 
West Orange, New Jersey 

Cornell University 
Department of Mining Engineering 
T4- V» Q r\ a    TvTo t.r "Vr\ T»lr 

ATTN: ORDTB - Bal Sec 
Department of the Army 
Washington 25, D.C. 

Ohio State University 
Department of Mining Engineering 
Columbus 8, Ohio 

Chief, Bureau of Naval Weapons 
A  mm»T       T\T" r%       *") *"* ATTN: uxö-jj 
Department of the Navy 
Washinst.nn 2^. D.C. 

Frincetun University 

ATTN:  Librarian 
Princeton, New Jersey 

Commander 
Naval Ordnance Laboratory 
ATTN:  Library 
White Oak, Silver Spring 19> Maryland 

ConLTiiande r 
U.S. Naval Ordnance Test Station 
ATTN:  Technical Library 
China Lake, California 

Purdue University 
Department of Mining Engineering 
Lafayette, Indiana 

Southwest Research Ii 
ATTN: F.A. Warren 
8500 Culebra Road 
San Antonio 6, Texas 

t.i t.nt.p 

15 



DISTRIBUTION LIST 

No. of 
Copies Organization 

University of Kentucky- 
Department of Mathematics 
ATTN;  Dr. A.W. Goodman 
Lexington, Kentucky 

Dr. A.S. Galbraith 
Army Research Office 
Box CM, Duke Station 
Durham, North Carolina 

Arlington Hall Station 
Arlington, Virginia 

Dr. W.H. Pell 
National Bureau of Standards 
232 Dynamometer Building 
Washington 25, D.C. 

Dr. R. Langer 
U.S. Army Mathematics Center 
Madison, Wisconsin 

No. of 
Copies 

10 

Organization 

Commander 
British Army Staff 
British Defence Staff (W) 
ATTN:  Reports Officer 
3100 Massachusetts Avenue, N.W. 
Washington 8, D.C. 

Of Interest to: 

Dr. H.R. Fehling 
T Albion Gate 
London, England 

Professor C.J. Tranter 
Military College of Science 
Shrivenham, England 

Defence Research Member 
Canadian Joint Staff 
2*150 Massachusetts Avenue, N.W. 
Wa sh ingt on 8, D. C. 

±b 



**$$ 

» ft 
& 
o\ 

Pi «1 

ft 
O H 

iSBS^ 

CGi 

10 r-j 
o   a»   aj 

P. 

ON 

3 

o ft I 


